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We give an overview of studies of models for semiflexible, equilibrium polymers
with special emphasis on our work on both lattice and continuum models for
such systems. We show, principally by Monte Carlo simulations, that, once
monomers self assemble to form polymers, their semiflexibility leads to nematic
phases at low temperatures. Attractive wall potentials encourage the adsorption
of these equilibrium polymers on surfaces. Rapid cooling leads to the formation
of glasses with entangled polymers. Shear promotes nematic ordering, but, at
high shear rates, this tendency decreases since the equilibrium polymers are torn
apart. A version of our model in which the polymers are directed shows the
polymer analog of bosonic Mott-insulating, mass-density-wave, and supersolid
phases. We give a brief comparison of our work with other studies and also
explore the experimental implications of our study.
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It is a great honor and pleasure to contribute this paper to the
special issue of Journal of Statistical Physics for Professor
Michael Fisher’s seventieth birthday. He has influenced us all
by the high intellectual standards that he has used in his work
and which he has also demanded of others in the field of statis-
tical mechanics. We look forward to his incisive comments and
guidance and wish him many more years of active reaseach in
this field.



1. INTRODUCTION

In systems of equilibrium polymers the lengths L of polymers fluctuate to
yield a length distribution P(L) that depends on the temperature T, the
chemical potential m, and other thermodynamic fields. These length fluc-
tuations arise because polymer scission and fusion energies are comparable
to kBT, where T is the temperature and kB is the Boltzman constant (hen-
ceforth we set kB=1). Some early papers (1) use the name living polymers,
but the modern consensus is to reserve the term living for polymers in
which monomers are only added to or removed from the ends of chains; in
all other cases where polymer lengths fluctuate we use the term equilibrium
polymers.

Experimental realizations of systems of equilibrium polymer abound.(2)

They include wormlike micelles in water-surfactant mixtures(3) with surfac-
tants like Cetyltrimethyl Ammonium Bromide (CTAB)(4) and 3-hydroxy-
naphthalene-2-carboxylate, (SHNC)(5–8) or Cetyltrimethylammonium Tosilate
(CTAT),(9, 10) liquid sulfur(11) and selenium, DNA molecules,(12) and poly
(a-methylstyrene).(13–17) Some of these systems, like the micelle-forming water-
CTAB-SHNC system, yield equilibrium polymers that are also semiflexible,
i.e., there is a positive energy cost for bends in the polymers, so they form
nematic phases at low temperatures.

There have been several experimental studies of the formation and
behavior of living polymers (13–17) in dilute solutions of poly (a methyl-
styrene). The polymerization temperature Tp has been determined as a
function of the initial mole fraction of monomers: (13) Tp depends strongly
on the initial concentration of monomers but weakly on the nature of the
solvent. In good solvents the degree of polymerization rises rapidly
below Tp; this increase and the behavior of various thermodynamic func-
tions in the vicinity of Tp have been fit to the predictions of a dilute O(n)
spin model in the limit n Q 0 in which there is an underlying continuous
phase transition. (18, 19) Scattering studies (15) show that the mean radius of
gyration of equilibrium polymers first rises, as the temperature is lowered
below Tp, and then saturates as the polymers start overlapping. At this
saturation metastability is observed, especially while heating the system.
Furthermore, the pure liquid of monomers forms very viscous glassy
systems of polymers with long equilibration times. (20)

Water-surfactant systems can form wormlike micelles which behave
like equilibrium polymers. Dilute solutions of wormlike micelles have been
studied. (21) The more concentrated systems studied subsequently showed
evidence for semiflexibility. In particular, they showed interesting visco-
elastic and relaxation properties and shear-induced nematic formation.
Deuterium NMR spectroscopy in a Couette cell showed a shear-induced
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isotropic to nematic transition in the concentrated wormlike-micelle system
CTAB/D2O. (22) Stress plateaux were seen in water-surfactant systems with
wormlike micelles (23) and detailed studies of the relaxation behavior of
shear stress, on the application of different shear fields, were also carried
out. (24) Small-angle neutron-scattering studies (21) showed that the tumbling
instability of nematic wormlike micelles results in oscillations in shear-
stress responses. Representative rheological investigations of such worm-
like micellar systems include refs. 9, 10, and 25; these showed, inter alia,
that the the measured stress was a nonmonotonic function of the shear
rate ċ; (9, 10) in other experiments, where the stress was controlled externally,
the stress-strain curves showed a plateau for ċ larger than some critical
strain rate.

The development of a theoretical understanding of the experiments
described briefly above is an important challenge in the statistical mechan-
ics of complex fluids. Several models have been developed for this purpose
and considerable progress can be made by semi-analytical methods in the
dilute case. In particular, there is reasonable agreement between experi-
ments, simulations, and theory (26) on the form of the length distribution
P(L) of the lengths L of equilibrium polymers in such dilute systems. (26–29)

A simple minimization of a Flory–Huggins-type free energy with Gaussian
chains with a finite scission and fusion energy yields an exponential length
distribution in the semidilute case; (26, 29) in the dilute case the distribution
crosses over to the Schulz–Zimm form. (29)

Approximate, mean-field methods for the study of phase transitions
from isotropic to nematic or hexagonal-columnar phases in more dense
systems have also been developed (30, 31) by using phenomenological free
energies. We concentrate on complementary studies (32–37) that have used
numerical simulations to obtain a detailed understanding of the statistical
mechanics of models for semiflexible, equilibrium polymers in systems that
are dense enough to form mesophases at low temperatures.

Given the complexity of the statistical mechanics of semiflexible equi-
librium polymeric melts, early studies were restricted to lattice models. In
very special limits, these models can be studied analytically; however, for
generic parameter values computer-simulation methods have to be used.
Most studies concentrated on either semiflexible or equilibrium poly-
mers; (29, 38–40) a few, however, studied lattice models in which equilibrium
polymers, once formed, were semiflexible. (41–45) Lattice models suffer, per-
force, from a variety of artifacts, so the next natural step was to develop
continuum or off-lattice models for polymers. This was done by a few
groups (32, 34–37, 46–51) over the past decade or so since the improvement of
computational facilities made it possible to study the statistical mechanics
of such off-lattice models by computer-simulation methods.

The Statistical Mechanics of Semiflexible Equilibrium Polymers 1221



To the best of our knowledge, ours is the only off-lattice model for
equilibrium polymers which, when formed, are also semiflexible; (32) other
models described either semiflexible or equilibrium polymers. Our study
covers both equilibrium phenomena, such as phase diagrams and thermo-
dynamic functions in the vicinity of the isotropic-nematic transition, and
nonequilibrium ones, like glass formation and the response of our model
system of semiflexible, equilibrium polymers to shear. We caution the
reader that the name ‘‘equilibrium polymers’’ does not mean that we
restrict our work to studies of the equilibrium statistical mechanics of these
systems. In Section 2 we give a brief overview of models for semiflexible,
equilibrium polymers with special emphasis on the ones developed in our
group; (32, 43–45) we end this section with a summary of our principal results.
Section 3 is devoted to details of our calculations and results. Section 4
contains concluding remarks.

2. LATTICE AND OFF-LATTICE MODELS

2.1. Overview of Models and Studies of Equilibrium and

Semiflexible Polymers

Early work (18) which suggested that reversible polymerization could be
treated as a phase transition was shown (19) to be equivalent to a mean-field
treatment of a model for a magnetic phase transition in an n-component
O(n) model in the limit n Q 0. These studies have been extended to a dilute
O(n) model again in the limit n Q 0 (52–54) and compared in detail with
experiments (13–15) on dilute solutions of poly (a methylstyrene). (If ring
polymers are allowed, (55) one must use n=1.) Metastability effects manifest
themselves as the solution becomes concentrated; and our emphasis in this
paper is on systems that are concentrated enough either to yield liquid-
crystalline mesophases or metastable states.

The bond-fluctuation model (38) has also been successful in describing
the static and dynamic properties of equilibrium polymers. Though devel-
oped on a lattice, this model allows for fluctuating bond lengths and shows
Rouse behavior for all dimensions. Static properties of equilibrium poly-
mers have been studied using this model and have confirmed the crossover
from Schulz–Zimm to exponential distributions as the system moves from
the dilute to the semidilute cases (29) mentioned above. A Monte Carlo study
of diffusion in a bond-fluctuation model with equilibrium polymers (40) has
shown Rouse behavior.

Lattice-model studies that concentrate on the semiflexibility of poly-
mers owe much to the early work of Flory (56) in which he developed a
model for semiflexible (but not equilibrium) polymers on a lattice; the

1222 Chatterji and Pandit



polymers were modelled as self-avoiding random walks on a three-dimen-
sional lattice and an energy penalty was introduced for right-angle bends.
Flory’s mean-field treatment of this model yielded a first-order phase tran-
sition from an isotropic phase, in which the polymers had a high density of
bends, to an ordered state in which the polymers pointed, on average,
along one of the axes (x, y, or z) of the lattice; this ordered phase could
either be thought of as an orientationally ordered polymer nematic or a
polymer crystal because of the underlying periodicity of the lattice (this is a
lattice-model artifact that subsequent off-lattice studies have overcome).
Monte Carlo simulations (57) corroborated and developed Flory’s results;
however, there was some controversy about the nature of the transition
especially in a two-dimensional version of the Flory model. For a recent
discussion of this issue see ref. 45, which explains why the two-dimensional
case is subtle: in essence this is because, in an enlarged parameter space,
Flory’s model lies close to the F model, which displays a high-temperature
phase with algebraically decaying correlations.

Lattice models for semiflexible equilibrium polymers have generalized
Flory’s model by introducing energies for open ends, etc., as we describe
below. (43–45) In addition there has been another class of lattice models which
we term independent-monomer-state (IMS) models (45) in which truncated
link configurations at vertices attach to form polymers. (41, 42) These models
also describe semiflexible, equilibrium polymers; their phase diagrams have
been studied in detail and show a transition from a disordered state to one
with aligned polymers; this transition can be second-order or first-order,
with a tricritical point in between. (41, 42) However, these IMS models admit
configurations not present in the types of lattice models we study below, in
which monomers occupy the links of the lattice. (45)

To overcome the constraints of lattice models, off-lattice studies of
fixed-length polymers have been proposed; these often use bead-spring-type
models. (35, 46) They have been used to study dilute and concentrated poly-
mers solutions. In addition to static properties like chain radii, internal
energy and specific heat, dynamical properties like mean-square displace-
ments, relaxation times and diffusion constants have also been obtained. (35)

In another study, this model has been used to study polymers in random
media. (46) The influence of the degree of semiflexibility on the isotropic-
nematic phase transition has been studied, (49) as a function of density of
monomers for polymers of fixed length, by using a free-energy minimiza-
tion techniques. Further studies of systems of semiflexible polymers have
used molecular-dynamics simulation and the finitely extendable nonlinear
elastic (FENE) potential; (47) by using partially stiff and fully stiff fixed-
length polymers, this study finds solid, smectic, and liquid phases but no
nematic phase. This FENE model has also been modified suitably to yield
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equilibrium polymers (36) and used, in the dilute and semidilute regimes, to
study the behavior of equilibrium polymers under shear flow: It is found
that individual conformations of chains tend to elongate along the flow
direction, the mean polymer length decreases as the shear rate increases,
and that the molecular-weight distribution changes from the power-expo-
nential Schwartz form to a mean-field-type exponential distribution func-
tion at high shear rates. Our off-lattice model (32) in which monomers self
assemble to form semiflexible, equilibrium polymers is described in detail
below.

We summarize first the essential qualitative results that follow from
the studies of the lattice (43–45) and continuum models (32) developed in our
group. At high temperatures T all these models have a disordered phase in
which there are short polymer chains with a large number of bends. The
length distribution P(L) of polymer chains drops exponentially with L. As
T is lowered, phase transitions occur yielding an ordered phase with long,
predominantly aligned polymer chains and a low density of bends. The
precise nature of the transition depends on the dimension d; e.g., if d=2
the transition is continuous and in the universality class of the two-dimen-
sional, Ising-model transition for the model of refs. 43–45; however, if
d=3 the transition is first-order. In lattice models the low-temperature
ordered phase can be interpreted as a polymer crystal; but, in continuum
models such as that of ref. 32, it is a polymer nematic. Thermodynamic
functions such as the density and the nematic order parameter show a jump
at this transition.

We have also studied adsorption at neutral and attractive walls in our
continuum model. We find, in particular, adsorbed films on attractive
walls, as we approach the bulk isotropic-nematic phase boundary. These
adsorbed layers show enhanced nematic ordering relative to the bulk.

We have studied the effects of shear in our continuum model by a
dynamic Monte Carlo method (Section 3). We observe that shear promotes
nematic alignment in our system of equilibrium polymers at low shear
rates. However, at high shear rates the chains get torn apart so this nematic
ordering decreases. This tearing apart has been noted in earlier studies of
equilibrium polymers that are not semiflexible. (47)

Equilibration is very slow in both lattice and continuum models espe-
cially at low temperatures: the mean polymer length OLP is large, so glasses
form easily. In particular, if we quench our system from high to low tem-
peratures, we get disordered, metastable states that are glass-like as we
show explicitly by a Monte-Carlo analog of scanning calorimetry. We also
present some differential scanning calorimetry results which are consistent
with experimental results on the glass formation temperature. The effect of
bounding walls on glass formation temperature is also investigated.
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2.2. Our Models

2.2.1. Lattice Models for Semiflexible Equilibrium Polymers

Lattice models for semiflexible polymers date back at least as far as
the seminal work of Flory (56) mentioned above. Models for equilibrium
polymers allow the lengths of such polymers to fluctuate by including an
energy cost for the scission of polymer chains and for their open ends.
Early studies of systems of equilibrium polymers (41, 58) concentrated on the
statistics of completely flexible (e=0) polymer chains. Subsequent studies
have included both scission and fusion of polymer chains along with
semiflexibility. We illustrate this for the lattice model of refs. 43–45 in
which the variables occupy the links of a d-dimensional hypercubic lattice
and assume the value 0, if no monomer is present, and 1, if a monomer is
present; at most one monomer is allowed per link, i.e., polymers avoid each
other and themselves. For example, for d=2 we have a square lattice in
which it is convenient to associate two links with every site (i, j) and use
the link variables nx(i, j) and ny(i, j) that occupy, respectively, the left
( − x) and the downward ( − y) links emanating from it. Monomers can fuse
to form polymers. Semiflexibility is introduced via a positive energy cost e

for right-angled bends, there is a chemical potential m for vacancies (i.e.,
sites which have no monomers on all emanating links), and an energy h > 0

Fig. 1. Link configurations and corresponding energy costs E in the model of refs. 43, 44,
and 45. Full lines indicate links occupied by monomers, whereas dashed or blank ones show
unoccupied links. There is an energy cost h for open ends, e for bends, and m for vacancies.
Branching is disallowed by virtue of infinite energy costs for trivalent and tetravalent vertices.
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for open ends; branching of equilibrium polymers is forbidden in this
model but the formation of ring polymers is allowed. (For d=2 see Fig. 1.)
For d=3 it is useful to introduce a mild attractive energy cost between
monomers on parallel links of a plaquette. This disfavors the formation of
ground states in which the polymers in a plane are aligned but successive
planes are stacked randomly. (45)

2.2.2. Directed Semiflexible Equilibrium Polymers

We have recently modified (33) the lattice model described above so that
the polymers, once formed, are directed, on average, along a given direc-
tion. This model for directed, semiflexible, equilibrium polymers is of rele-
vance in studies of vacancy and interstitial strings in columnar phases in
discotic liquid crystals. (59) Figure 2 shows the energies of different link
configurations in this model for d=2. Note, in particular, the negative
energy c that promotes the formation of equilibrium polymers directed

Fig. 2. Link configurations and corresponding energy costs in our model for directed
semiflexible polymers. Full lines indicate links occupied by monomers, whereas dashed or
blank ones show unoccupied links. Infinite energy costs indicate disallowed configurations.
e is the energy for bends and can be greater than, equal to, or less than 0; h > 0 is the energy
for open ends; c < 0 favors links in the y direction; m is the chemical potential for vacancies;
J > 0 is the repulsive energy cost for occupied parallel links on opposite side of a square
plaquette. Branching, hairpin bends along the y direction, and two consecutively occupied x
links are forbidden. (In the studies we present here m=0.)
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preferentially along the vertical (y) axis. Hairpin bends along the y direc-
tion and 2 or more consecutive occupied links in the x direction are for-
bidden. We also introduce a mild, repulsive energy cost J > 0 between
monomers on parallel links of a plaquette. To examine the competition
between phases in which the polymers, once formed, straighten and those
in which they meander and wind around the system we have studied our
directed model for (a) e > 0, (b) e < 0, and (c) e=0. At low temperatures,
the polymers formed prefer to be straight in case (a) whereas in cases (b)
and (c) the polymers wind around the lattice with a high density of bends.

For case (c), i.e., flexible polymers with e=0, this model can be
mapped on to a model of hard-core bosons on a lattice with an extended-
Hubbard-type repulsion between bosons on nearest-neighbor sites. (60–62)

The polymers can be visualised as the world lines of these bosons. (61, 62)

Since 2 or more consecutive occupied links in the x direction are forbidden
in our directed-polymer model, its bosonic analog allows only for hopping
between nearest-neighbor sites. The square of the winding number of the
polymers can be shown to be proportional to the superfluid density of
bosons. (63–65)

2.2.3. Continuum Models

Lattice models of the type discussed above have the virtue that they
can be studied in great detail by say Monte Carlo simulations. However,
the underlying lattice introduces certain artifacts which can be overcome
only by using continuum or off-lattice models. For example, it is not
straightforward to distinguish between nematically ordered polymeric
phases and a crystalline stacking of polymers in a lattice model because of
the periodicity imposed by the lattice. Most off-lattice models for equilib-
rium polymers use the bead-spring or FENE models mentioned above.
These have concentrated either on equilibrium polymers that are not
semiflexible or on semiflexible polymers that are of fixed length. A notable
exception is the work of refs. 30 and 31 which has studied the formation of
nematic and hexagonal phases in systems of wormlike micelles by using an
approximate mean-field theory with a phenomenological free energy.

The goal of our recent work has been to develop an off-lattice molec-
ular model for self-assembling, semiflexible, equilibrium polymers and
study its statistical mechanics by Monte Carlo (MC) simulations. Our
model accounts for such semiflexibility by using an isotropic two-body
interaction V2(r) between monomers; the tendency to form linear,
semiflexible chains without branches is brought in via a three-body
interaction V3(rij, rik, h). These interaction potentials are given below:

V2(r)=E[(2s/r)12 − (2s/r)6]+E1 exp(−a(r/2s)) − V0, (1)

The Statistical Mechanics of Semiflexible Equilibrium Polymers 1227



with r the separation between two monomers, E1/E=1.34, s=1, a=1.72,
and V0 such that the potential is continuous at the distance rmax beyond
which we set V2(r)=0. We use rmax/s=5, so V0/E=0.0142.

V3(r12, r13, h)=E3
1 s3

r12
− 121 s3

r13
− 12 tan2 h, (2)

where rij — |rFij | and rik — |rFik | are, respectively, the separations of particles j
and k from particle i, h is the angle between rFij and rFik, s3/s=3, and
E/E3=4.66. For some of our studies we have also used a higher value of E3,
namely E/E3=1.4. We set V3(r12, r13, h)=0 if either r12 > s3 or r13 > s3.
A representative plot of our potential is given in Fig. 3. It is also useful to
introduce a field that favors the formation of a nematic phase. We accom-
plish this by assigning an energy − H2

n cos2 f for a segment of polymer
chain connecting nearest-neighbor monomers, with f the angle between the
z axis and the vector connecting one monomer to its nearest neighbor.

At large distances the two-body potential V2 goes from being attractive
to repulsive at r 4 3s. Thus we use the convention that, if the distance
between two monomers is [ 3s at a given instant, then they belong to the
same polymer at that time. Of course the assignment of monomers to
polymers changes with time in our model for equilibrium polymers. Our
qualitative results do not depend upon this convention. Similarly we expect
the qualitative aspects of our study (as opposed to quantitative results for
transition temperatures, etc.) to be independent of the specific parametri-
zation we use for V2 and V3, which is a convenient way of building in the
following physical requirements: Monomers should aggregate to yield
semiflexible, equilibrium polymers that do not branch; and different
strands of well-formed polymers should avoid each other. Branching is
avoided by a combination of self avoidance constraints and the high energy

Fig. 3. Representative plot of the potential [V2(r)+V3(r12, r13, h)]/E used in our off-lattice
model for h=0 (full line), and h=45° (line with *), r12=2.5s, and r13=r. V3(r12, r, h)=0 for
r > 3s; and V2(r)=0 for r > 5s (we use units with s=1).
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of right angled bends because of the tan2 h term in the potential V3. The
specific microscopic potentials that lead to such equilibrium polymers will
of course depend on the particular physical system being considered; and
those appropriate for the formation of wormlike micelles in water-CTAB-
SHNC mixtures, will be quite different from the V2 and V3 we use.

To study the adsorption of the equilibrium polymers on surfaces we
introduce two bounding walls perpendicular to the x direction at x=0 and
x=300s; in the y and z directions we use periodic boundary conditions.
Furthermore we assume that the monomers interact with the walls via the
potential (68)

Vw=w[(2sw/x)9 − (15/2)(2sw/x)3], (3)

which is attractive at long distances; the parameter w specifies the strength
of Vw and sw governs the position of its minimum; and x is the distance
from the nearest wall to the monomer in question. (67, 68) For convenience
we have used sw=s=1 and w/E=14.286 × 10−4 for attractive walls; for
neutral walls we use w/E=14.286 × 10−8. In our simulations we use the
form of Vw in Eq. (3) for x < 7sw; for x > 7sw we set Vw=0 and to ensure
continuity of the potential at x=sw we add a suitable constant to Vw. Spe-
cifically, for x < 7sw we use Vw=w[((2sw/x)9 − (15/2)(2sw/x)3+0.1749].

3. CALCULATIONS AND RESULTS

3.1. Calculations

3.1.1. Semiflexible Equilibrium Polymers: Lattice Model

Given the complexity of the models that we have described above, it is
not possible to study their statistical mechanics by analytical methods.
However, there are a few special limits in which our lattice model can be
mapped on to an exactly solvable vertex model. Both our lattice models
map on to 11-vertex models if we use a two-dimensional, square lattice. If
we forbid vacancies and open ends, by assigning infinite energy costs to
them, the simple lattice model described above maps on to an F model
which can be solved exactly; (66) at certain specific values of the temperature
this model can be mapped on to a free-fermion model. (45) In the general
case, however, this model must be studied by computer-simulation
methods. As described in ref. 45, the Monte Carlo algorithm of Metropolis
et al. is used in conjunction with single-link updates and, where necessary,
multiple-link updates to facilitate equilibration at low T. Since we are
studying a model of equilibrium polymers it is natural to use the grand-
canonical ensemble.
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3.1.2. Directed Semiflexible Equilibrium Polymers

We study our model for directed semiflexible equilibrium polymer by a
straightforward extension of the Monte Carlo method used in ref. 45. In
particular, we use the grand-canonical ensemble with single-links up-
dates. (33) We concentrate here on the directed-polymer analogs of superfluid
phases in bosonic models and restrict our study to two dimensions. Since
the polymers are directed along the y direction, we use lattices of size
Lx=12 and Ly=60 for all the results reported here. We have checked,
though, that larger lattices give the same results. We have studied this
model for e > 0, e=0, and e < 0, and also for various values of h and J (see
Fig. 2). Here we give representative data only for e=0 and e=1 with h=8
and J=1 and refer the reader to ref. 33 for a systematic study of this
model. We have calculated, as a function of the temperature T, the internal
energy U, the specific heat C, the square of the winding number OW2P,
which characterizes superfluid ordering for e [ 0, and the mass-density-
wave (MDW) order parameter for e=1. The MDW order parameter mMDW

is defined as follows:

mMDW= C
Ly

j=1
C
Lx

i=1
(−1) i (2ny(i, j) − 1)/M, (4)

where M is the total number of links. To calculate winding numbers we
follow Monte Carlo simulations of bosonic models (63, 64) in which the boson
world lines are like our directed polymers. The superfluid density rs and
the winding number are related via OW2P=2rs(T) (

2/mkBT. (63–65)

We start our simulations at high temperatures and then cool our
system slowly to reach the ordered state. At each value of temperature, we
allow our system to equilibrate for 3 × 105 MCS, after which we collect
data to for thermodynamic averaging every 50 iterations for 105 MCS. We
then heat our system by using the configuration at the lowest temperature
reached as the initial configuration for the heating run. Metastable states
hamper equilibration especially for e=0 and at low T; these are especially
pronounced for OW2P.

3.1.3. Continuum Models

As in our lattice models, we use the grand-canonical ensemble in the
Monte Carlo simulations of our off-lattice model of equilibrium polymers;
thus we introduce a chemical potential m for monomers. [For the sake of
notational conformity with our earlier studies, (32, 43–45) we use the symbol m

to denote the chemical potential for vacancies in our lattice models; but it
denotes the chemical potential for monomers in our off-lattice model. We
hope the meaning of the symbol m will be clear from the context in which it
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is used.] Thus the isotropic-nematic phase boundary is a line in the m–T
plane. We use the canonical ensemble only in those simulations where we
investigate the effect of shear on the system. We use periodic boundary
conditions and a cubical box of side a=60s for most of our studies. We
have also checked that our results remain qualitatively unchanged for
larger system sizes, i.e., a cubical box of side a=78s. However, while
studying adsorption at surfaces or the effect of shear on the system, we
impose two bounding walls perpendicular to the x direction and use
periodic boundary conditions along the two remaining directions.

For our studies of equilibrium phase diagrams, we start by placing
1000 monomers on a simple-cubic lattice inside the simulation domain. The
positions of the monomers are then updated by using the algorithm of
Metropolis, et al. The monomers self assemble to form polydisperse
polymer chains with a length distribution P(L) that depends on T and m.
We make 500–1000 attempts both to introduce and remove particles with
suitable Boltzmann weights every 15 Monte Carlo steps (MCS). We
equilibrate our system at a high temperature and gradually cool it by
changing T/E in steps of 7.14 × 10−5 till we reach the low-temperature
nematic phase. We then take the configuration at the lowest temperature
reached as the initial configuration and slowly heat our system till we reach
the isotropic phase. At each temperature we allow the system to equilibrate
for 30000 MCS after which we collect data for averages every 15 MCS for
60000 MCS to calculate thermodynamic functions. We calculate the inter-
nal energy U, the nematic order parameter s=O(3 cos2(h) − 1)/2P, the
average length of polymers OLP, the mean number N of monomers in the
box, the distribution of polymer lengths P(L), and the aspect ratio A of
polymer chains with more than 3 monomers. The angle h required for the
nematic order parameter is calculated by first distinguishing each chain,
then calculating the moment-of-inertia tensor for each chain, diagonalizing
this tensor, and finally obtaining the angle that the major axis makes with
the nematic direction (in this case the z direction). The aspect ratio is
measured by taking the ratio of the major axis and the minor axis. When
we study our system in a larger box, i.e., when the box size is a=78s, we
equilibrate over 45000 MCS and average thermodynamic functions over
next 90000 MCS at each temperature.

To study the adsorption of polymers on walls, we introduced two
bounding walls perpendicular to the x direction. Periodic boundary condi-
tions are imposed along the other two directions. For the case of attractive
walls we use the potential Vw as mentioned in Eq. (3); for the case of
neutral walls, we reduce the strength of the attractive part of Vw but retain
its repulsive part and use a system of size 300s × 60s × 60s. We calculate
the layer density r(x), at representative values of m and T on the isotropic
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side of the bulk isotropic-nematic phase boundary, by averaging over
layers parallel to the walls; the thickness of each layer is taken to be s. At
each value of m and T we equilibrate over 104 MCS and then collect data to
calculate thermodynamic functions every 10 MCS for another 104 MCS.
We make 3000 attempts to introduce and remove particles with suitable
Boltzmann weights every 10 MCS. As we will discuss below, our data are
good enough to show, pictorially, the adsorption of self-assembled poly-
mers on attractive walls; however, our runs are not long enough to obtain
complete surface phase diagrams which should show wetting transitions in
these systems. (67, 68)

We impose shear on our system of equilibrium polymers by the
dynamical Monte Carlo method. (36, 37) We apply an external field Fz(x)
along the z direction and let its magnitude change linearly along the x
direction. We impose rigid walls perpendicular to the x direction and
periodic boundary conditions along other directions. Specifically, we use

Fz(x)=B(x/a − 1/2), (5)

where B is a measure of the strength of shear whose magnitude is high near
the walls and reverses direction in the middle of the box. To specify the
shear in dimensionless units, we define B — B dzmax/E, where dzmax is the
maximum allowed value of dz in a single Monte Carlo move. When the
position of a monomer is updated in a Monte Carlo move, then the work
done by this applied field is also added to dE1, the change in energy when
the monomer changes its position from (x1, y1, z1) to (x2, y2, z2). Thus the
total energy change dE used in our Monte Carlo update is

dE=dz B 1x1+x2

2a
−

1
2
2+dE1. (6)

We start our runs with 2700 monomers arranged in a simple-cubic
lattice and work in the canonical ensemble, set Hn/`E=0, and a=60s.
We start at high temperatures and cool our system; we then start with the
lowest-temperature configuration as the intial configuration for the heating
run. In these runs the temperatute T is changed in steps of
DT/E=7.14 × 10−5 and data are collected for averages every 30 MCS for
30000 MCS after initial transients are discarded for 15000 MCS.

To explore glassy states in our models we carry out Monte Carlo
analogs of scanning-calorimetry studies. These were first used in our lattice-
model (44, 45) studies. Here we present them only for our off-lattice model. As
we illustrate below, a numerical derivative of our scanning-calorimetry
plots of internal energy U/E versus T/E yields a conventional differential-
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scanning-calorimetry (DSC) plot. We obtain glassy states by quenching our
system rapidly from high T and cooling it by reducing T/E in steps of
7.14 × 10−5 and holding it fixed at every stage for 300 MCS.

The energy U/E for this cooling run is averaged over 150 MCS with
data collected every 15 MCS. The disordered polymer state that obtains is
then heated slowly in steps of 7.14 × 10−5; at each stage in the heating run
the system is allowed to relax for 15000 MCS and data for thermodynamic
functions are collected every 15 MCS for another 30000 MCS. Further-
more, 1000 attempts are made to introduce or remove particles every 15
MCS. DSC experiments measure the ‘‘specific heat’’ C (strictly dU/dT).
The specific heat shows a minimum at the temperature where the glass
changes to the low-T equilibrium phase (nematic in our case). A sub-
sequent peak indicates the change from the low-T equilibrium to the high-
T (isotropic) phase. To make contact with experiments, we plot C (i.e.,
dU/dT) versus T. To obtain dU/dT we fit our plot of U/E versus T/E for
the heating run with a 9th-order polynomial and take the derivative of this
polynomial with respect to T.

Walls affect the glass-forming tendencies of polymeric systems. (70)

Thus we have obtained the effect of attractive and neutral walls on our
DSC studies. We find that the nature of the wall affects the temperature
associated with the glass-nematic transition at which dU/dT shows a
minimum. We use three wall separations, namely, 18s, 36s, and 72s and
periodic boundary conditions in the remaining directions with a box size of
60s. For these three cases we start with 800, 1920, and 3800 monomers,
respectively, and every 10 MCS we attempt to remove or add 200, 400, and
800 monomers, respectively, to the system. For the rapid-cooling run, data
are collected over 100 iterations every 10 MCS at every value of T. Data
for heating runs are averaged over 10000 MCS, and collected every 10
MCS; the value of Hn/`E is 0.0207. The heating run starts at a tempera-
ture much higher than in the case without walls because the strongly
attractive walls change the transition temperature, since we are now con-
sidering systems in which the walls are very close together. Of course, if the
walls were infinitely far apart, they would not affect the bulk transition
temperature.

3.2. Results

3.2.1. Semiflexible Equilibrium Polymers: Lattice Models

The lattice model of refs. 43–45 has been studied in both two and three
dimensions. We only give a brief outline of the principal results here. At
low temperatures there is a crystallization transition of polymers, provided
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the system is cooled slowly enough to prevent glass formation. The phase
transition is continuous in d=2 and there is a first-order phase transition
from the disordered phase to the crystalline phase at d=3. These transi-
tions can be characterized by the measurement of various thermodynamic
functions. The relaxation of glassy metastable polymeric systems is very
slow. Scanning calorimetry studies have been carried out and the results are
qualitatively similar to those we report below for our off-lattice model. If
the system is quenched rapidly to low T from high T, disordered meta-
stable states are obtained. In three dimensions the glasses formed are
completely disordered for high values of open-end cost h, but partially
ordered lamellar glasses for intermediate values of h; relaxation out of
glassy states is logarithmically slow for high h. Lowering h eases the frus-
tration in disordered polymer networks, obtained on quenching, thereby
inducing an apparently continuous glass transition, but this is not related
to an equlibrium phase transition. This model has the obvious lattice arti-
facts mentioned above; the lamellar glass in this model is also a lattice
artifact.

3.2.2. Directed Semiflexible Equilibrium Polymers

Qualitatively new phases arise if the equilibrium polymers in our
lattice model are directed. In particular, we obtain polymer analogs of
superfluid and mass-density-wave phases in lattice models for interacting
bosons.

At high T we get short, disordered chains with a low value of the
average length OLP for all values of e. However, as the temperature is
lowered, we get longer chains of self-assembled polymers. Their interac-
tions then lead to the polymer analogs of a mass-density wave in the boson
language, for e > 0, and a superfluid phase with winding polymers for
e [ 0. The top panel of Fig. 4 shows representative configurations for e=0
and e=1 respectively. If e [ 0 the polymers wind in our lattice. However,
the mutual repulsion J between monomers and the self-avoidance con-
straints ensure that only every alternate site is occupied by a monomer; to
this extent there is also mass-density-wave order in the system for e [ 0 and
is reminiscent of a supersolid phase. Conventional mass-density-order
shows clearly in the configuration of polymers for e=1, since there is only
one aligned polymer on every other column (i.e., one boson at every other
site). Plots of the specific heat C, OW2P and mMDW versus T are also given
in Fig. 4 for the above mentioned values of e. The mass-density-wave order
parameter mMDW for e=1 shows a clear jump indicating a first-order tran-
sition. The shape of the specific heat plot suggests a more subtle KDP type
transition, (33) though we have not been able to map our model on to an ice
model. (66) The plots of C and OW2P versus T for e=0 are consistent with a
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Fig. 4. Representative configurations (top panel) of polymer chains in our model for
directed polymers at low temperatures showing the winding phase for e=0 (left) and the mass-
density-wave phases for e=1.0 (right). Plots of the specific heat C (middle panel), and the
square of the winding number OW2P and the mass-density-wave order parameter mMDW

(bottom panel) versus temperature T. The transition is continuous for e=0 (we believe of the
Kosterlitz–Thouless type), but the order parameter shows a jump for e=1 (the specific heat is
reminiscent of that for KDP type models).
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continuous transition of the Kosterlitz–Thouless type as we discuss in
detail in ref. 33 (however, metastability problems make it hard to get good-
quality data for OW2P at low T). This is what we would expect from the
mapping of our model to models of interacting bosons of one dimension,
which show superfluid phases with algebraically decaying correlations.
A detailed study of the dependence of OW2P on Lx and Ly would be
interesting to check, in particular, the dependence of finite-size effects on
boundary conditions discussed in ref. 69 in the context of bosonic models
and flux lines in superconductors. As noted there, free boundary condi-
tions, more appropriate for flux-line and directed-polymer problems than
the periodic boundary conditions used for bosonic models, can suppress a
sharp phase transition between the disordered and the winding phase. This
is because the correspondence between inverse temperature and sample size
along the field direction in the flux-line problem is only approximate; we
refer the reader to ref. 69 for further details. We also wish to remark here
that, if the density of open ends is finite in our system of directed, equilib-
rium polymers, then the sharp transition between the disordered phase and
the winding phase is also suppressed; it is sharp only if there are no open
ends. Note also that a Mott-insulating phase arises in bosonic models only
because of the underlying pinning potential introduced by the lattice itself;
such a phase would not be present in a continuum model without an
externally imposed pinning potential.

3.2.3. Continuum Models

As in the lattice-model work of ref. 43–45 we get a disordered iso-
tropic (I) phase with low mean lengths OLP of self-assembled polymers at
high T. This phase transforms into one that is nematically ordered (N) at a
first-order phase transition as we lower the temperature. Representative
configurations in these isotropic and nematic phases of self-assemled
polymers are shown in Fig. 5 for our off-lattice model. We expect that
these equilibrium polymers will have an exponential distribution of lengths.
The distribution P(L) of lengths is shown in a semilog plot versus L for
two representative sets of parameter values in Fig. 6 and at temperatures in
the vicinity of the isotropic-nematic transition. Note that by the length L
we mean the number of monomers in a chain. The distribution does not
change significantly with the system size; but care must be exercised in the
low-temperature phase as we discuss below while presenting our results for
the mean length in the nematic phase.

Figure 7 shows various plots of the internal energy U/E, the nematic
order parameter s, and the mean length OLP versus the temperature for
m/E=−0.023, Hn/`E=0.0293, and E/E3=4.66. The hysteresis loops in all
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Fig. 5. Representative instantaneous snapshots of monomer configurations in our off-lattice
model from our Monte Carlo simulations for m/E=−0.0223, nematic-ordering field
Hn/`E=0.0293, and E/E3=4.66 for (a) a disordered configuration at T/E=0.00757 and (b)
a nematically ordered configuration showing aligned, self-assembled equilibrium polymers at
T/E=0.00707.

the plots of Fig. 7 indicate that the isotropic-nematic transition in our off-
lattice model is first-order, just as it is in the lattice model of refs. 43–45 in
three dimensions. In these hysteresis loops cooling runs are indicated by
full circles •, and heating runs by open circles p. The widths of these hys-
teresis loops depend of course on cooling and heating rates; if the system is
cooled infinitely slowly, these loops will be replaced by equilibrium jump
discontinuities in U/E, s, and OLP at the first order transition. We have
investigated the dependence of hysteresis loops on the linear size a of our

Fig. 6. Semilog plot of the length distribution P(L) of polymers of length L in the vicinity of the
isotropic-nematic transition (at T/E=0.00757 and T/E=0.00707 for the parameters used here).
P(L) can be fit to an exponential form for 2Ls < a, where a is the length of the cubical simulation
box. E/E3=4.66, m/E=−0.0223, Hn/`E=0.0293, and (a) a=60s and (b) a=78s.
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cubical simulation box and cooling and heating rates. Figures 7(a)–(c) are
obtained with a=60s and a temperature difference of DT/E=7.14 × 10−5

between successive temperatures in our heating and cooling scans.
Figures 7(d)–(f ) are analogous plots for a larger system size, a=78s, with
all other parameters as in Figs. 7(a)–(c). In Figs. 7(g)–(i), all parameters are
as in Figs. 7(a)–(c) except for the cooling and heating rates which are
halved with DT/E=3.57 × 10−5. A comparison of the top, middle and

Fig. 7. Plots of the energy U/E, the nematic order parameter s, and the mean length OLP
versus temperature T for m/E=−0.023, E/E3=4.66 and Hn/`E=0.0293 showing hysteresis
loops. The jumps at the transition temperature broaden into a hysteresis loop because our
temperature scan through the transitions is not slow enough relative to the equilibration times
in our system: (a–c) Data for a cubical simulation box of size with side a=60s, and a cooling
and heating rate that corresponds to a temperature difference of DT/E=7.14 × 10−5 between
successive points; (c–f ) data for a cubical simulation box of size with side a=78s and the
same heating and cooling rate; (g–i) data for a cubical simulation box of size with side a=60s

but the cooling and heating rate halved to DT/E=3.57 × 10−5. Full circles • represent the
cooling runs whereas open circles p represent the heating runs.
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bottom panels of Fig. 7 indicate, therefore, that U/E and s do not have a
significant size dependence since the data for a=60s and a=78s are
comparable; also the widths of the hysteresis loops decrease as we decrease
cooling and heating rates, which is in accordance with our general expecta-
tions. Note that, away from the isotropic-nematic transition, our cooling
and heating runs coincide indicating that our data are well equilibrated.

The value of OLP is independent of a ( \ 60s) in the high-temperature
isotropic phase; however, in the low-T nematic phase OLP increases sub-
stantially as a goes from 60s to 78s; indeed, many polymers loop around
our simulation box because of the periodic boundary conditions we use.
Only much larger simulations than those reported here can settle whether
OLP ’ a in the low-T nematic phase, or whether, eventually, OLP saturates
to a temperature dependent but a-independent value for all temperatures
below the ordering temperature. At T=0 this value of OLP could then
diverge with a, but other phases like the hexagonal columnar phase could
also form at lower values of T than explored here.

We have checked explicitly that no branching of polymers occurs in
our model. For example, consider the case E/E3=1.4, m/E 4 − 0.0171, and
Hn/`E 4 0.0207: if T/E 4 0.0071, which lies above the isotropic-nematic
transition temperature, there are on average 2009 monomers and 358
chains (including single-monomer and dimer units); at T/E 4 0.00543,
which lies below the isotropic-nematic transition temperature, there are on
average 3262 monomers and 29 chains. In both these cases there are no
monomers with more than two other monomers as neighbours; i.e., there is
no branching of polymers that self-assemble in our model.

We have also obtained thermodynamic functions at a higher value of E3

(than in Fig. 7). Representative results for E/E3=1.4 are shown in Fig. 8.
A comparison of the hysteresis loops in Fig. 8 with those in Fig. 7
(E/E3=4.66) indicates that, as E3 increases, so does the latent heat at the
isotropic-nematic transition. (Of course we must exercise some caution while
estimating latent heats from the wide hysteresis loops of Figs. 7 and 8.) The
data of Fig. 8 show that the hysteresis loops become narrower as we
increase Hn/`E; also the nematic phase forms at a higher temperature as is
to be expected. Figures 9(a) and (b) show, respectively, plots of the mean
aspect ratio A of the polymers and the number N of monomers in our sim-
ulation box as functions of T/E for E/E3=4.66 (full lines) and E/E3=1.4
(dashed lines), m/E=−0.023, a=60s, and Hn/`E=0.0293. Since A
increases clearly with increasing E3 [Fig. 9(a)] it is tempting to interpret E3

as a parameter whose principal role is to make the polymers semiflexible.
However, a careful consideration of our potentials [Eqs. (1)–(2)] shows that
a change in E3 also changes other properties of our potentials, such as the
depth of the curves shown in Fig. 3 at fixed values of h. Figure 9(b)
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Fig. 8. Plots of (a) energy U/E and (b) nematic order parameter s versus T/E for our off-
lattice model with E/E3=1.4 and m/E=−0.023 for a cubical box of size a=60s. Dashed lines
joining data points indicate Hn/`E=0.0207 whereas full lines indicate Hn/`E=0.0293. Full
circles • represent cooling runs whereas open circles p represent heating runs. As Hn/`E

increases, the nematic phase forms at a higher temperature as expected.

shows the range of values of the number of monomers N in the vicinity of
the isotropic-nematic transition.

The measurements of the thermodynamic functions shown in Figs. 7–9
can be used to obtain the phase diagram for our off-lattice model. Two
representative phase diagrams are shown in Fig. 10 in the m–T plane for
different parameter values. These phase diagrams show the isotropic and
nematic phases separated by a first-order phase boundary (dashed line).
The error bars on these phase boundaries are large since the hysteresis
loops [Figs. 7–9] are quite wide given our cooling and heating rates. These

Fig. 9. Plots of (a) the average aspect ratio A and (b) the total number of monomers N
versus temperature T for our off-lattice model with E/E3=4.66 (full lines between data points)
and E/E3=1.4 (dashed lines) for m/E=−0.023, Hn/`E=0.0293, and a cubical box of size
a=60s. Full circles • represent cooling runs whereas open circles p represent heating runs.
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Fig. 10. Phase diagrams in the m–T plane showing the first-order phase boundary separating
the isotropic (I) and nematic (N) phases for E/E3=4.66, Hn/`E=−0.0293 (left panel) and
E/E3=1.4 and Hn/`E=−0.0207 (right panel) for our off-lattice model. The large error bars
in the transition temperature correspond to the widths of the order parameter hysteresis loops
in Fig. 7.

error bars are estimated by the difference in temperature between the
heating and cooling runs at the point at which the order parameter s=0.4,
which occurs roughly in the middle of the hysteresis loop.

We have shown previously (32) that our model of semiflexible polymers
shows shear alignment. When we apply shear by the dynamic Monte Carlo
method described above, the self-assembled polymers in our off-lattice
model get nematically aligned and the system exhibits a positive value of s
at temperatures that are too high for the formation of a nematic phase in
the absence of shear. Thus shear promotes nematic ordering at low shear
rates. However, higher shear rates reduce this nematic alignment by tearing

Fig. 11. The variation of the mean length of polymers OLP with T/E for m/E=−0.0214,
Hn/`E=0 and with an imposed shear. The strength of the shear is measured by the param-
eter B defined in the text. For B=0.00018, cooling runs are indicated by (+) and heating runs
by À ; and for B=0.00007, cooling runs are indicated by • and heating runs by open
circles p.
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apart the chains of equlibrium polymers. This is illustrated in the plot of
the mean length OLP versus temperature (Fig. 11) for two different shear
rates. However, hydrodynamic effects are not incorporated in the dynamic
Monte Carlo method we use to apply shear. This dynamic Monte Carlo
method is, therefore, not suitable for studies of the rheological properties
of our off-lattice model and cannot, in particular, be used to study the
shear banding we expect in these systems; (9, 10) these must await equilibrium-
polymer analogs of the Molecular Dynamics simulations (47) used for
systems of semiflexible polymers.

We have described above the cooling and heating protocols that we
use in our scanning calorimetry studies of glasses in our off-lattice model.
Our results for these are illustrated in the plots of Fig. 12 for m/E=−0.023,
E/E3=1.4, and Hn/`E=0.0207. The cooling runs are carried out at a rate

Fig. 12. Scanning-calorimetry plots for our off-lattice model showing (a) U/E, (b) the deri-
vative, with respect to T, of a polynomial fit to U/E (heating run), and (c) the nematic order
parameter s for m/E=−0.023, E/E3=1.4 and Hn/`E=0.0207 for a system of size
60s × 60s × 60s with periodic boundary conditions. The rapid-cooling scan is indicated by •
and the heating runs by open circles (p). The dip in C just before T/E 4 0.006 in (b) corre-
sponds to the transition from a low temperature glass, formed on rapid cooling, to the
nematic phase. The plotted configurations are at the lowest temperature immediately after
rapid cooling (left) and at the temperature which shows the highest nematic order on heating
(right).
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that is fast enough to prevent equilibration; instead a disordered, meta-
stable, glassy state obtains as shown in the representative configuration of
entangled, self-assembled polymers on the bottom left of Fig. 12. Slow
heating along the heating part of our scanning calorimetry curves makes
this disordered configuration evolve into one with a fair degree of nematic
order; a representative configuration with such nematic order is shown on
the bottom right of Fig. 12. Figure 12(a) shows the variation of the internal
energy U/E versus temperature for both the rapid-cooling and the slow-
heating scans. A derivative, with respect to T, of the heating scan yields the
differential-scanning-calorimetry (DSC) plot of the ‘‘specific heat’’ C versus
the temperature shown in Fig. 12(b). The first dip in this specific heat
marks the temperature where the glassy configuration changes to the low-T
equilibrium phase (a nematic here). The subsequent peak indicates the
change from the low-T equilibrium phase to the high-T (isotropic) phase.

Fig. 13. Scanning calorimetry plots, as in Figs. 12(a) and (b) but for a system with attractive
walls [(a) and (c)] and neutral walls [(b) and (d)], showing U/E [(a) and (b)] and C=dU/dT
[(c) and (d)] versus temperature T/E. Periodic boundary conditions are used in the y and z
directions with a box of length of 60s. The walls normal to the x direction are separated by
18s (*), 36s( p ) and 72s (+). A 9-th order polynomial was fitted to the data of (a) and (b)
and the derivative of this polynomial was used to obtain C=dU/dT for (c) and (d).
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To make contact with experiments, we plot C (i.e., dU/dT) versus T. This
differential-scanning plot is qualitatively similar to ones obtained in exper-
imental polymeric glasses. Also, our results here are akin to those for the
lattice model of refs. 43–45. Figure 12(c) shows how the nematic order
parameter rises from near zero, in the glassy state, to about 0.6 in the
heating run here before it falls to zero again in the equilibrium, isotropic
phase at high T/E.

We have also carried out scanning-calorimetry studies of our off-
lattice models in the presence of attractive and neutral walls. These results
are given in the plots of Fig. 13. Our study here has been motivated by the
recent interest (70) in the dependence of the glass transition temprature in
polymeric glasses on the properties of walls in narrow, confining systems.
Given our off-lattice model, it is easy for us to repeat our scanning-
calorimetry procedure with attractive or neutral walls separated by differ-
ent distances. We do not directly determine a glass transition in our studies,
but we can certainly identify the first minimum in our DSC scans, which is

Fig. 14. The layer number of monomers r(x) in a slice of width s × 60s × 60s versus x, the
normal distance from the wall at x=0, showing the adsorption of semiflexible, equilibrium
polymers in our model at attractive walls placed at x=0 and x=300s. Data have been
obtained in the vicinity of the bulk isotropic-nematic transition for (E/E3=1.4) and
T/E 4 0.0066 for two different values of the chemical potential.
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associated with the conversion of the glass into a nematically ordered state.
The position of this minimum is clearly visible in the plots of Fig. 13 for
different wall separations and the cases of attractive walls (left panels) and
neutral walls (right panels). As we might expect, attractive walls have a
more dramatic effect on the position of this minimum. In Fig. 14 we show
for comparison how attractive walls lead to the adsorption of monomers,
in equilibrium, in our off-lattice modeli; such adsorption leads to an
increased density near the walls and, in equilibrium, an attendant enhan-
cement of the nematic order parameter there.

4. CONCLUSIONS

Our aim in this paper has been to give an overview of the salient
points in the statistical mechanics of semiflexible, equilibrium polymers and
related systems of living polymers. These comprise a large class of systems,
including soultions of wormlike micelles or poly(a methylstyrene). The
polymers attain an equilibrium length distribution P(L), which has typi-
cally an exponential form (power-law prefactors modify the exponential in
the dilute limit). If the collection of self-assembled polymers is dense
enough and semiflexibility induces the formation of elongated chains, then
interactions precipitate the formation of a polymer-nematic phase as the
temperature is lowered. The polymers align if such systems are sheared;
and the formation of a nematic phase is preempted by glass formation if
the cooling rate is not slow enough. Furthermore, there has been a recent
suggestion (59) that one can obtain physical realizations of directed, semi-
flexible, equilibrium.

We have tried to study these phenomena, especially those associated
with the formation of nematic phases or glassy states, by using both lattice
and off-lattice models. There have been other studies, some using lattice
models and others with continuum models, of different aspects of the sta-
tistical mechanics of this class of systems; we have summarized these above.
However, we are not aware of any other work that integrates the study of
equilibrium phases, directed equilibrium polymers, glass formation, surface
adsorption, and shear alignment in these systems by using related lattice
and continuum models. We have attempted this here in the hope that the
collection of these studies in one place will stimulate new experimental
studies of this fascinating class of polymeric systems.

We have discussed our results above; further details can be found in
refs. 32, 33, and 43–45. Here we highlight those aspects of our results that
we hope will lead to novel experiments. It would be extremely interesting to
see if the polymer analogs of the superfluid and mass-density-wave phases
mentioned above can be obtained in the experimental realizations of
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directed, equilibrium polymers mentioned in ref. 59. Equilibrium phase
diagrams, say density-temperature versions of the ones shown in Fig. 10,
would be very welcome, especially if they could be studied as a function of
the chain stiffness. Shear-alignment and shear-banding experiments are
perhaps ahead of simulations here; molecular-dynamics simulations of
shear banding in models for equilibrium, semiflexible polymers are certainly
worth undertaking. So too are experimental differential-scanning-calorime-
try studies of glassy states in these systmes, whose Monte Carlo analogs we
have discussed in detail above. And last, experimental studies of the
adsorption of semiflexible, equilibrium polymers are well worth carrying
out along the lines of our illustrative Monte Carlo studies of these issues.
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